Enter a problem...
Linear Algebra Examples
Step 1
Step 1.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is and the second matrix is .
Step 1.2
Multiply each row in the first matrix by each column in the second matrix.
Step 1.3
Simplify each element of the matrix by multiplying out all the expressions.
Step 2
Write as a linear system of equations.
Step 3
Step 3.1
Add to both sides of the equation.
Step 3.2
Replace all occurrences of with in each equation.
Step 3.2.1
Replace all occurrences of in with .
Step 3.2.2
Simplify the left side.
Step 3.2.2.1
Simplify .
Step 3.2.2.1.1
Simplify each term.
Step 3.2.2.1.1.1
Apply the distributive property.
Step 3.2.2.1.1.2
Multiply by .
Step 3.2.2.1.2
Subtract from .
Step 3.2.3
Replace all occurrences of in with .
Step 3.2.4
Simplify the left side.
Step 3.2.4.1
Simplify .
Step 3.2.4.1.1
Simplify each term.
Step 3.2.4.1.1.1
Apply the distributive property.
Step 3.2.4.1.1.2
Multiply by .
Step 3.2.4.1.2
Add and .
Step 3.3
Reorder and .
Step 3.4
Solve for in .
Step 3.4.1
Rewrite the equation as .
Step 3.4.2
Subtract from both sides of the equation.
Step 3.5
Replace all occurrences of with in each equation.
Step 3.5.1
Replace all occurrences of in with .
Step 3.5.2
Simplify the left side.
Step 3.5.2.1
Simplify .
Step 3.5.2.1.1
Simplify each term.
Step 3.5.2.1.1.1
Apply the distributive property.
Step 3.5.2.1.1.2
Multiply by .
Step 3.5.2.1.2
Add and .
Step 3.5.3
Replace all occurrences of in with .
Step 3.5.4
Simplify the left side.
Step 3.5.4.1
Simplify .
Step 3.5.4.1.1
Simplify each term.
Step 3.5.4.1.1.1
Apply the distributive property.
Step 3.5.4.1.1.2
Multiply by .
Step 3.5.4.1.2
Subtract from .
Step 3.6
Solve for in .
Step 3.6.1
Move all terms not containing to the right side of the equation.
Step 3.6.1.1
Add to both sides of the equation.
Step 3.6.1.2
Add to both sides of the equation.
Step 3.6.1.3
Add and .
Step 3.6.2
Divide each term in by and simplify.
Step 3.6.2.1
Divide each term in by .
Step 3.6.2.2
Simplify the left side.
Step 3.6.2.2.1
Cancel the common factor of .
Step 3.6.2.2.1.1
Cancel the common factor.
Step 3.6.2.2.1.2
Divide by .
Step 3.7
Replace all occurrences of with in each equation.
Step 3.7.1
Replace all occurrences of in with .
Step 3.7.2
Simplify the left side.
Step 3.7.2.1
Simplify .
Step 3.7.2.1.1
Apply the distributive property.
Step 3.7.2.1.2
To write as a fraction with a common denominator, multiply by .
Step 3.7.2.1.3
Combine and .
Step 3.7.2.1.4
Combine the numerators over the common denominator.
Step 3.7.2.1.5
Combine the numerators over the common denominator.
Step 3.7.2.1.6
Multiply by .
Step 3.7.2.1.7
Add and .
Step 3.7.2.1.8
To write as a fraction with a common denominator, multiply by .
Step 3.7.2.1.9
Simplify terms.
Step 3.7.2.1.9.1
Combine and .
Step 3.7.2.1.9.2
Combine the numerators over the common denominator.
Step 3.7.2.1.10
Simplify the numerator.
Step 3.7.2.1.10.1
Multiply by .
Step 3.7.2.1.10.2
Subtract from .
Step 3.8
Solve for in .
Step 3.8.1
Multiply both sides of the equation by .
Step 3.8.2
Simplify both sides of the equation.
Step 3.8.2.1
Simplify the left side.
Step 3.8.2.1.1
Cancel the common factor of .
Step 3.8.2.1.1.1
Cancel the common factor.
Step 3.8.2.1.1.2
Rewrite the expression.
Step 3.8.2.2
Simplify the right side.
Step 3.8.2.2.1
Multiply by .
Step 3.8.3
Move all terms not containing to the right side of the equation.
Step 3.8.3.1
Add to both sides of the equation.
Step 3.8.3.2
Add and .
Step 3.9
Replace all occurrences of with in each equation.
Step 3.9.1
Replace all occurrences of in with .
Step 3.9.2
Simplify the right side.
Step 3.9.2.1
Simplify .
Step 3.9.2.1.1
Combine the numerators over the common denominator.
Step 3.9.2.1.2
Simplify the expression.
Step 3.9.2.1.2.1
Multiply by .
Step 3.9.2.1.2.2
Add and .
Step 3.9.2.1.2.3
Divide by .
Step 3.9.3
Replace all occurrences of in with .
Step 3.9.4
Simplify the right side.
Step 3.9.4.1
Subtract from .
Step 3.10
List all of the solutions.